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Abstract

An analytical model to predict non-linear dynamic responses in a rotor bearing system due to surface
waviness has been developed. In the analytical formulation the contacts between the rolling elements and
the races are considered as non-linear springs, whose stiffness are obtained by using Hertzian elastic contact
deformation theory. The governing differential equations of motion are obtained by using Lagrange’s
equations. The implicit type numerical integration technique Newmark-f with Newton—-Raphson method is
used to solve the non-linear differential equations iteratively. A computer program is developed to simulate
surface waviness of the components. Results presented in the form of fast Fourier transformation with
agreement of various author’s experimental researches.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The stiffness, rotational accuracy and vibration characteristics of a high-speed shaft are partly
controlled by the ball bearings that support it. An analysis of ball bearing dynamic behavior is
important to predict the system vibration responses. The behavior of non-linear systems often
demonstrates unexpected behavior patterns that are extremely sensitive to initial conditions.
When ball bearings are operated at high speed, they generate vibrations and noise. The principle
forces, which drive these vibrations, are time varying non-linear contact forces, which exist
between the various components of the bearings: rolling elements, races and shafts. In the shaft
bearing assembly supported by rolling element bearings, the vibration spectrum is dominated by
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the vibrations at the natural frequency and the ball passage frequency (BPF). The vibrations at
this later frequency are called ball passage vibrations (BPV).

The vibrations are also generated by geometrical imperfections on the individual bearing
components and these imperfections are caused by irregularities during the manufacturing
process. Although the amplitude of these imperfections are on micrometer scale, but they can still
produce significant vibrations in the applications. The imperfection such as surface waviness in
the rolling elements and races developed during manufacturing process, produce significant
vibrations in the system. The radial and axial clearances, which provided in the design of bearing
to compensate the thermal expansion, are also a source of vibrations and introduce the non-
linearity in the dynamic behavior.

The early work done in the rotor dynamics by Yamamoto [1] investigate analytically the
vibration characteristics of vertical rotors supported by ball bearings with the effect of bearing
radial clearances. The conclusion of this work shows that the maximum amplitude at critical
speed as well as the value of the critical speed decreases with increasing radial clearances and
critical speed disappears under the condition beyond a marginal clearance, which depends on the
amount of unbalance. Gustafson et al. [2] studied the effects of waviness and pointed out that
lower order ring waviness affects the amplitude of the vibrations at the BPF. They observed that
vibrations at higher harmonics of the BPF are also present in the vibration spectrum and their
amplitudes depend on the radial load, radial clearance, rotational speed and the order of
harmonics. The same conclusion was theoretically proved by Meyer et al. [3] for perfect radial ball
bearings with linear modelling of the spring characteristics of balls. Gad et al. [4] showed that
resonance occurs when BPF coincides with frequency of the system and they also pointed out that
for certain speeds, BPF can exhibit its sub and super harmonic vibrations for shaft ball bearing
system.

El-Sayed [5] derived a form of equation for the stiffness of bearings and determined total
deflections of inner and outer races caused by an applied load, using the Hertz theory. Tamura
and Tsuda [6] performed a theoretical study of fluctuations of the radial spring characteristics of a
ball bearing due to ball revolutions. Bal ‘Mont et al. [7] considered two factors for structural
vibrations of ball bearings, one of these is the contact load from the balls, which deform the races
into polyhedral shape, and other is the motion of balls relative to the line of action of the radial
load which fluctuates the rigidity of the bearing.

Sayles and Poon [8] found that the waviness causes most of the sever vibrations and noise
problems in the bearings. They reported that waviness produces vibrations at frequencies up to
approximately 300 times the rotational speed but is predominant at frequencies at below about 60
times rotational speeds. Datta and Farhang [9] developed a non-linear model for structural
vibrations in the rolling bearings by considering the stiffness of the individual region where the
elements contact each other but in this model distributed defects are not considered. Wardle and
Poon [10] also pointed out the relations between the number of balls and waves for sever
vibrations to occur. When the number of balls and waves are equal there would be severing
vibrations. Yhland [11] presented a linear theory of vibrations of shaft bearing system caused by
ball bearing geometrical imperfections.

Aktiirk [12] presented the effect of surface waviness on vibrations associated with ball bearings
and conclude that for outer race waviness most sever vibrations occur when the BPF and its
harmonics coincide with the natural frequency. Aktiirk et al. [13] performed a theoretical
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investigations of effect of varying the preload on the vibration characteristics of a shaft bearing
system and also suggested that by taking correct number of balls and amount of preload in a
bearing untoward effect of the BPV can be reduced. Wardle [14] showed that in case of inner race
waviness, the axial vibrations take place at frequencies harmonic with ball to inner race passage
rate N (w — w.) and the ball waviness produced vibrations in the axial and radial directions at
different frequencies and also pointed out that only even orders of ball waviness produced
vibrations.

It is well known that the surface waviness of the races and non-linear restoring force at each
contact point have vital role in dynamics of the bearings. In this paper, a theoretical investigation
was made to observe the effect of surface waviness on the vibration characteristics of a rotor
bearing system. A 3-d.o.f. system is considered with the assumption that there is no friction
between the balls and raceways and that both bearings are positioned symmetrically such that
their moving parts are in synchronization. Fast Fourier transformations are obtained to study the
non-linear dynamic responses of rolling element bearings.

2. The problem formulation

A schematic diagram of rolling element bearing is shown in Fig. 1. For investigating the
structural vibration characteristics of rolling element bearing, a model of bearing assembly can be
considered as a spring—mass system, in which the outer race of the bearing is fixed in a rigid
support and the inner race is fixed rigidly with the shaft. Elastic deformation between races and
rollers give a non-linear force deformation relation, which is obtained by Hertzian theory. Other
sources of stiffness variation are positive internal radial clearance, finite number of balls whose
position changes periodically and the inner and outer race waviness. These cause periodic changes
in stiffness of bearing assembly. Thus, the system undergoes non-linear vibration under dynamic
conditions.

Fig. 1. A schematic diagram of a rolling element bearing.
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In the mathematical modelling, the rolling element bearing is considered as spring—mass system
and rolling elements act as non-linear contact spring as shown in Fig. 2. Since the Hertzian forces
arise only when there is contact deformation, the springs are required to act only in compression.
In other words, the respective spring force comes into play when the instantaneous spring length is
shorter than its unstressed length, otherwise the separation between rolling element and the races
takes place and the resultant force is set to zero.

2.1. Race waviness

An important source of vibrations in ball bearings is waviness. These are global sinusoidal
shaped imperfections on the outer surface of the bearing Components as shown in Fig. 3a. The
characteristic wavelengths of the imperfections are much larger than the dimensions of the
Hertzian contact areas between the balls and the guiding races. The number of waves per
circumference is denoted by the wave number. Waviness imperfections cause variations in the
contact loads when the bearing is running. The magnitude of the variation depends on the
amplitude of the imperfection and the non-linear stiffness in the contact. Due to the variations in
the contact loads, vibrations are generated in the bearing. Imperfections with a different wave
number cause vibrations at distinct frequencies, each with a characteristic vibration mode. The
surface waviness in bearing causes additional vibrations.

Waviness is in the form of peaks and valleys of varying height and width. Therefore, for
mathematical modelling using waviness effect, a statistical approach is necessary in order to have
complete solution. If the rings are assumed to bend due to rolling element loads then the flexural
vibrations of the rings as well as the rigid body motion have to be considered. To avoid these
problems the inner and outer rings are assumed not to bend under these loads and a sinusoidal
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Fig. 2. Mass—spring model of the rolling element bearing.
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Fig. 3. Geometry of contacting bodies.

wavy surface is assumed. The wavelength is assumed to be much greater than the ball to race foot
print width and the wave geometry itself is assumed to be unaffected by contact distortion. Waves
are described in terms of two parameters: the wavelength (1), which is the distance taken by a
single cycle of the wave and its amplitude (I1).

2.1.1. Inner race waviness

When the rolling element is moving round the inner race, it follows the rolling surface contours
continuously. It is assumed that no slip condition, i.e. rolling element always in contact with inner
race and also it is assumed that the inner race surface has a circumferential sinusoidal wavy
feature. The amplitude of wavy surface is often with respect to central point at a certain angle
from the reference axis. Hence the amplitude of sinusoidal wave is

I =11, sin <277:%). (D)

The inner race has circumference sinusoidal wavy surface, therefore, the radial clearance consist
of a constant part and a variable part. Hence the amplitude of the wave of inner race is

U1);, = (Ip) + (I1,)sin <2n%> , 2)

where I, is the maximum amplitude of wave and II, is initial wave amplitude (or constant
clearance) as shown in Fig. 3b.
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The arc length (L) of the wave of inner race at the contact angle is
L =r0;. (3)

For an imperfect surface with N waves, the wavelength (1) is inversely proportional to the

number of waves N as

1
Loc—. 4
o @

For the inner race the wavelength is ratio of length of the inner race circumference to the
number of waves on circumference.

L= (5)

where r is radius of inner race.
The amplitude of the waves of inner race at the contact angle is

(ID),, = (o) + (I,)sin(N0;), (6)

where 0; is the contact angle of jth rolling element. Since the inner race is moving at the speed of
shaft and ball center is at the speed of the cage. After time taken ‘¢, the cage will lag the shaft, so
ball center will lag the inner race. Hence the contact angle is

2n .
OjZF(/_ 1)+(wcage_w)>< f (7)
b
where N, is the number of rolling element, ¢ is the time co-ordinate.
j=1,2,3,...,Np,

where
1 P; 1 p;
wcage = 5 WDinner |:1 - _J:| + E WDouter |:1 + f]p] ’ (8)
where R, is the pitch radius.
2.1.2. Outer race waviness

The outer race surface also has circumferential sinusoidal wavy surface, and the outer race is
assumed to be stationary, hence both outer race and rolling element are rotating at the speed of
cage. The amplitude of sinusoidal wave of outer race is

L/
I1 = Il sin (Zn 7) . 9)
The arc length (L) of the wave of outer race at the contact angle is
L' = RO;. (10)

For the outer race the wavelength is ratio of length of the inner race circumference to the
number of waves on circumference.

M= (11)

where R is radius of inner race.
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Hence the amplitude of the wave of outer race is

(), = (o) + (ITy)sin(N)). (12)

Hence the contact angle is

2
6/:£0_1)+wcage><t- (13)

For a rolling element at an angular position 0;, the inner race contact point will be at [r + (I1),,]
and for this rolling element the outer race contact point will be at [R — (II),,,]. From bearing
geometry:

[R - (H)out] - [V + (H)m] = 2(pr)a (14)

where p, is the radius of rolling element.

2.2. Contact stiffness

Hertz considered the stress and deformation in the perfectly smooth, ellipsoidal, contacting
elastic solids. The application of the classical theory of elasticity to the problem forms the basis of
stress calculation for machine elements as ball and roller bearings. Therefore, the point contact
between the race and ball develop into an area contact which has the shape of an ellipse with a and
b as the semi-major and semi-minor axes, respectively. The curvature sum and difference are
needed in order to obtain the contact force of the ball. The curvature sum > p is obtained as from
Harris [15] is expressed as

1 1 1 1
E pP=pPnt+tpPptpPmtPR=—F —F—F+—. (15)
m rno rm fm

The curvature F(p) difference is expressed as

(p11 — p12) + (P11 — P12)
. 16
2P (16

The parameters r11, 12, 111, 7112, P115 P15 P111- P112 @€ dependent upon calculations referring to the
inner and outer races as shown in Fig. 3. If the inner race is considered,

F(p) =

D D d;
n = 5,712 = E,Vm = 3’ ' =ri

and
2 2 2 1

o = D P2 = D m = EI; Pm = — r_l (17)
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If outer race is considered, they are given as

D D d,
= 5 = 5 rm = bR rmn =",
and (18)
2 2 2 1

P =7ppPr=pPm = A P2 = N

As per the sign convention followed, negative radius denotes a concave surface. Using Table 2
calculation of all the parameters including curvature difference at inner and outer race can be
done. For the contacting bodies being made of steel, the relative approach between two contacting
and deforming surface is given by

5= 2787 x 10803 (Z p)1/35*, (19)

where 6" is a function of F(p).
Hence, the contact force (Q) is

1/2
0 = {3.587 x 10 (Z p) (0% 321 532(N). (20)
The elastic modulus for the contact of a ball with the inner race is
~1/2 N
= 7 A #)=3/2( 1
K; = 3.587 x 10 (Z pl> (%) <mm>. 1)
And for the contact of a ball with the outer race is
—1/2 N
— 7 #-3/2( Y
K, = 3.587 x 10 (Z po) (%) (mm> (22)
Then the effective elastic modulus K for the bearing system is written as
1
K = . (23)

(I/Kl-l/n + 1/K(}/n)n

In Egs. (21) and (22), the parameters 7 and % can be attained from Table 1, if the values of
F(p); and F(p), are available with using of Table 2. The effective elastic modulus (K) for bearing
system with using geometrical and physical parameters is written as

K = 7055 x 105v/5 . (24)
mm

2.3. Derivation of governing equations of motion

A model for analysis of non-linear dynamic response due to distributed defects of rolling
element bearings is developed. First the expressions for kinetic and potential energies are formu-
lated for all components of rolling element bearing. Utilizing Lagrange’s equations with using
these energies expression can derive the equations of motion that describe the dynamic behavior
of complex model. A real shaft-rolling bearing system is generally very complicated and difficult
to model, so following assumptions are made in the development of the mathematical model.
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Table 1
Dimensional contact parameters
F (p) 0
0 1
0.1075 0.997
0.3204 0.9761
0.4795 0.9429
0.5916 0.9077
0.6716 0.8733
0.7332 0.8394
0.7948 0.7961
0.83595 0.7602
0.87366 0.7169
0.90999 0.6636
0.93657 0.6112
0.95738 0.5551
0.97290 0.4960
0.983797 0.4352
0.990902 0.3745
0.995112 3176
0.997300 0.2705
0.9981847 0.2427
0.9989156 0.2106
0.9994785 0.17167
0.9998527 0.11995
1 0
Table 2
Geometric and physical properties used for the rolling element bearings
Mass of rolling element (1) 0.009 kg
Mass of the inner race (m;,) 0.06kg
Mass of the outer race (11,,) 0.065kg
Mass of the shaft (my) 5.5kg
Radius of inner race with point of contact with the rolling element (r) 23 mm
Radius of outer race with point of contact with the rolling element (R) 31 mm
Radius of each rolling element (p;) 3.98 mm
Radial load (W) 10N
Pitch radius of ball set 2.7mm
Angular velocity of inner race (¢;,) 2500 rpm
Maximum amplitude of waviness (I1,) 2 um
Initial amplitude of waviness (I10) 1 um
Initial radial position of jth rolling element (p;) 27 mm
Initial position of center of inner race (x;;, Yi) (0, 0)mm

Initial position of center of inner race (X,us, Your) (0, 0)mm
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1. Deformations occur according to the Hertzian theory of elasticity. Hence only small elastic
motions of the rolling elements and the rings are considered.

2. The rolling elements, the inner and outer races and the shaft have motions in the plane of
bearing only.

3. The angular velocity of the cage is assumed to be constant.

4. The rollers in a rolling bearing are assumed to have no angular rotation about their axes. Hence
there is no interaction of the corners of the rollers with the cage and the flanges of the races.

5. All the bearing components and the rotor are rigid.

6. The outer race is rigid to the support and the inner race is fixed rigidly to the shaft, i.e. there is
no bending.

7. The cage ensures the constant angular separation () between rolling elements, hence there is no
interaction between rolling elements. Hence,

= (25)

To obtain the equations of motion of the bearing system, the Lagrange’s equation for a set of
independent generalized co-ordinates:

d oT oT n ov
dro{py ofpy  olp}
where the 7, V, p and f are kinetic energy, potential energy, vector with generalized d.o.f.
co-ordinate and vector with generalized contact forces, respectively. The kinetic and potential
energies can be subdivided into the contributions from the various components, i.e. from the
rolling elements, the inner race, the outer race and the shaft.

The total kinetic energy of the bearing system is the sum of the rolling elements, inner and outer
races and the shaft:

(AR (26)

Ny
T = Z T roller + Ti,race + To,race + Tshaﬁ- (27)
Jj=1

The subscripts i_race, o_race and shaft refer to, respectively, the inner race, the outer race and
the shaft. The subscript roller indicates the rolling elements and the other subscript j refers to the
element under consideration.

The potential energy is provided by deformations of the balls with the races and deformations
occur according to Hertzian contact theory of elasticity. Potential energy formulation is
performed taking datum as the horizontal plane through the global origin. The total potential
energy of the bearing system is the sum of the balls, inner and outer races, springs and the shaft:

Np
V= Z Vroller + Vi_race +V _race 1 Vsprings + Vshafta (28)
J=1
where Vioiers Viraces Vo_race and Vs are the potential energies due to elevation of the rolling

element, inner and outer races and the shaft, respectively. Vg 1s potential energy due to non-
linear spring contacts between balls and the races.
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2.3.1. Contribution of the inner race

Apart from local deformations in the contacts, the inner race is considered as a rigid body. The
kinetic energy of the inner race about its center of mass is evaluated in x- and y-frame. The
position of the origin of the moving frame relative to the reference frame is described by
transitional d.o.f. x;, and y;,.

The kinetic energy expression for the inner race is

Ti_race = %min (Vin . 71'}1) + %Im ¢,2n (29)

The position of inner race center is defined with respect to the outer race center. The x;, and y;,
co-ordinates are defined with respect to outer race center. The displacement vector showing the
location of inner race center with respect to outer race center is

71'71 = 7!()ut + 7in_0ut (30)
or
?in = (fm + X:oul)i"i_ (J_;in + j;out)]’:- (31)

Differentiation of r;, with respect to time (¢) gives
Fin = (Sind + Dinf). (32)

Xou and y,,, are zero because of the outer race is assumed to be stationary.
Hence,

Ti race = %min (x,zn + yi) + %Iin ,2,1 (33)

The position of the inner race is defined from the outer race center, hence the potential energy
for the inner race is

Vi_race = Ming (yin + yout)‘ (34)

2.3.2. Contribution of the outer race

The outer race is also considered as a rigid body and it is assumed that the outer race is
stationary. Hence, iy = 0 and ¢, = 0.

The kinetic energy expression for the outer race is

Ty race = %mout(?out : 7()ut) + % Ioul‘i)iut =0. (35)
The potential energy of the outer race is

Vo_race = Mout9Yout- (36)

2.3.3. Contribution of the rolling elements

The rolling elements are also considered as rigid bodies. For the determination of their
contribution to the kinetic energy, the position of the jth-rolling element is described by two
transitional d.o.f., (p; + i'4) and (]5]
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The kinetic energy due to the rolling elements to be obtained as a summation of those from each
element as

Np

Tr()ller = Z T} (37)

=

The position of the center of ball is defined with respect to the outer race center. Hence, the
kinetic energy of the jth rolling element be written as

T = 3B + Fou) (B + Tour) + 3 1] (38)

The displacement vector showing the location of jth rolling elements is
Bj = (B cos 0;) i+ (B, sin 0))]. (39)
And for the outer race center is
Fout = Xourl + PourJ- (40)
Differentiate Egs. (39) and (40) with respect to time (¢) and after summation, we get
(Bj + Four) (B + Four) = ] c08™ )

2
out

+ pjz sin’ 0]0']2 - 2p'jpjéj cos0;sin0; + X

+ 2X,u(pj cos 0; — p; sin 9_/'9]‘) + p'f sin’ 0;

+ pjz cos’ Gjﬂ? + 2pjpj9j cos 0; sin 0,

+ Vous + 2oy sin 0; + p; cos 0,0)). (41)
The outer race is assumed to be constant, hence x,,; = 0 and y,,, = 0.

(ﬁj + ?out) (/_5] + ?out) - sz cos’ 0]' + p]2 Sinz 916]2

+ p; sin 0; + p; cos” 0,07 (42)
or
(,Bj + Pour) (ﬁj + Pour) = (/fjj2 + p/20/2) (43)
From Eq. (37), we get
Ty = 3mi(p} + pj0)) + 1 ;. (44)

It is assumed that there is no slip, hence the relative transitional velocity of outer race and ball
must be same and in reverse direction. Therefore, the contact equation for jth ball and the outer
race can be written as

R(Gous — 07) = —p,(d; — 0)). (45)
The outer race is stationary, hence
d‘)out =0 (46)
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or
. . R
¢,:0j<1+—). 47)
Py
Now the kinetic energy of the jth ball be written as
A 1 Y N s R\?
Toan = Z;Emj(p] + p; 9]) + 51191 <1 + ,0_> . (48)
J= r
For the balls, the potential energy due to elevation is
Np
Viail = Z m;g(p; sin 0; + Your) (49)
=1
or
Np
Vian = Z m;gp; sin 0; + mgNpyour. (50)
j=1

2.3.4. Contribution of the shaft
The kinetic energy of the shaft is calculated by assuming that its center remains coincident with
the inner race. Hence, the kinetic energy of the shaft is
Tshaft - %mv(xlzn + yzzn) + %Iﬂf (51)
The shaft center is coinciding with inner race center and position of the inner race center is
defined with respect to outer race center. Hence, the potential energy of the shaft is expressed as
Vshaft = msg(yl'n + yout)- (52)

2.3.5. Contribution of the contact deformation

The contacts between balls and races treated as non-linear springs, whose stiffness obtained by
Hertzian theory of elasticity. The expression of potential energy due to the contact deformation of
the springs is

Nb 1 5 Nb 1 )
Vspriny = zl: 5 kiném + zl: z koutéoup (53)
J= J=

where k;, and k,,; are the non-linear stiffness due to Hertzian contact effects.
The deformation at contact points between the jth rolling element and inner race is

i = [{r+p,} = 1]- (54)

In this expression, if {r+ p,} > y;, compression takes place and restoring force act.
If {r + p,} <y;, no compression and restoring force is set to zero. Similarly, at the outer race the
deformation at the contact points is

S = | R= 1o, + 013, (55)

In this expression, if R<{p;+ p,}, compression takes place and restoring force act.
If R> {p;+ p,}, no compression and restoring force is set to zero.
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2.4. Equations of motion

The kinetic energy and potential energy contributed by the inner race, outer race, balls, shaft
and springs, can be differentiated with respect to the generalized co-ordinates p; (j = 1,2, ..., Ny),
Xin, and y;, to obtain the equations of motion. For the generalized co-ordinates p;, where j =
1,2, ..., N, the equations are

m;p; + myg sin 0; + m;p;6% — (ki)

dy.
X [(V + ,Or) - Xj]+6_ﬁ]- + (kout)[R - (pj + pr)]+
J

1 Ok 5 1 0kgy
<[R—(p;+ )P =0, j=1,2...,N;. (56)
For the generalized co-ordinate x;, the equation is
Ny ax .
(min + ms)xin - ;kin[(r + pr) - X/]+§l/n = Fu sm(wt). (57)
For the generalized co-ordinate y;, the equation is
.. Al a}(j
(i + M)Pin + (i + Mg — > kinl(r + p,) = Bz, = W+ Fucos(o). (58)
) in

This is a system of (N + 2) second order, non-linear differential equations. There is an external
radial force, which is allowed to act on the bearing system and no external mass is attached to the
outer race. The ““+ 7 sign as subscript in these equations signifies that if the expression inside the
bracket is greater than zero, then the rolling element at angular location 0; is loaded giving rise to
restoring force and if the expression inside bracket is negative or zero, then the rolling element is
not in the load zone, and restoring force is set to zero. For the balanced rotor condition, the
unbalance force (F,) is set to be zero.

The deformation of spring at inner race y; (from Fig. 2) can be obtained as

Xin + %; €08 O = Xour + p; €Os 0;, (59)
Yin +Xj sin 0 :y()ut+pj sin Oj' (60)

From these two equations, the expression for be, 1s obtained as
1 = [Xou — Xin)* + p? + 2p;(Xous — Xin)cOs 0
+20,(Vour — Yin)Sin 0; + (our — yin)' 1'% (61)
Now the partial derivatives of y; with respect to p;, x;, and y;, are
% P+ (Your — Xin)c08 0; + (Vour — Yin)sin 0;

) (62)
op; %
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% _ (xout - xin) - ,Oj CosS 0_]-
axin Xj

: (63)

% _ (y()ut - J/in) - p] Sin 0]
ayin be, ’

(64)

The non-linear stiffness associated with point contact of spring for the inner and outer races is
calculated by using Eq. (24) is

(ki) = 7.055 x 10°[{r + p,} — 1,]'/%, (65)
(Kour) = 7.055 x 10[R — {p; + p,}1'/2, (66)
(Okin) 5 129U
= —3.5725 x 10°[{r + p,} — 7, > 2, (67)
(agp”“’) =3.5725 x 10°[R — {p; + p,}]""/%. (68)
J

2.5. Ball passage frequency

When the shaft is rotating, applied loads are supported by a few balls restricted to a narrow
load region and the radial position of the inner race with respect to outer race depends on the
elastic deflections at the ball to raceways contacts. Balls are deformed as they enter the loaded
zone where the mutual convergence of the bearing races takes place and the balls rebound as they
move to unloaded region. Time taken by shaft to regain its initial position is

ti fi let tati f
o ime for a complete rotation o cage. (69)
Np
As the time needed for a complete rotation of the cage is 27/®qge, the shaft will be excited at
the frequency of (N X wcqge) known as BPF.

Hence, BPF (wy)) is

1 i 1 ;
Wpp = 5 Np®inper |:1 - %] + B NpOouter {1 + z—]:| . (70)
P P

Vibrations associated with the BPF are known as BPV or the elastic compliance vibrations.
The effect of BPF can be worst when it coincides with a natural frequency of the shaft bearing
system.

3. Results of the numerical simulations

The non-linear governing equations of motion (56)—(58) are solved by Newmark-f with
Newton—Raphson method to obtain the displacements of the rolling elements and the shaft. In
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order to study the effects of inner and outer race waviness in a more detail form, the shaft is
assumed to be perfectly rigid and supported by two radial contact ball bearings. The numerical
values of the parameters chosen for the numerical simulation are shown in Table 2. Numerical
stability in the result is obtained by assuming 0.00001-radian angular rotation at each step. This
causes a very large number of points. Therefore, every 400th point is plotted in the figures. To
confirm the aperiodic behavior of the ball bearing model, the fast Fourier transformations are
used. Balls are radially preloaded in order to ensure the continuous contact of all balls and the
raceways, otherwise a chaotic behavior might be observed. The waviness amplitude was set to
2 um and the number of waves round the races circumference is varied for a bearing with 8 balls
(Figs. 4 and 5).

3.1. Outer race waviness

In order to observe the effect of number of waves, frequency domain vibrations of shaft-
supported bearings are obtained as shown in Fig. 6. The shaft rotates at 2500 rpm.

&
)l

>
¥

\ 4

(b)

Fig. 4. (a) Waviness at the inner and outer races. (b) Wave of the race.
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(b)

Fig. 5. (a) Contact between inner race and rolling element. (b) Contact between outer race and rolling element.

When the number of waves is 7, the peak amplitude of vibration appears at the BPF (w;, =
140 Hz) as shown in Fig. 6a. The amplitude of peak is 3.5 um. When the number of waves is 8, the
dominant peak amplitude of vibration appears at the BPF with first superharmonic at twice of the
BPF (wp, = 280 Hz) as shown in Fig. 6b. The sever vibration occurs when the number of waves
and balls are equals. The maximum noise occurs in this case and this is confirmed experimentally
by Wardle [14]. Hence the sever vibration occur when the waviness order is kK = N,. When the
number of waves is 12, peak amplitude of vibrations at twice of the BPF with first subharmonic at
the BPF (wy,) as shown in Fig. 6c. When the number of waves is 16, the peak amplitude of
vibrations appears at twice of the BPF (wy, = 280 Hz) as shown in Fig. 6d. The amplitude of peak
is §um. A clear transformation from ¢ =1 to 2 can be observed in the obtained vibration
spectrum. When the number of waves is 17, high amplitude of peak appears at twice of the BPF
(wpp = 280 Hz) as shown in Fig. 6e. The amplitude of peak is 15 um.

Hence from the obtained results for outer race waviness, the sever vibrations occurs when the
number of balls and waves are equal. The waviness order for sever vibration is k = N,. It is
observed from the obtained responses that small amplitude of waviness on the stationary outer
race of a radial loaded bearing only produce vibration at frequencies that are harmonic of the ball
to outer pass rate (Np X weqq). The axial vibrations produced when the number of waves per
circumference is an integral multiple of the number of balls in the bearing, which was
experimentally proved by Wardle [14] and Yhland [11]. Table 3 summarizes the relevant waviness
orders, their peak amplitudes and harmonic in the bearing spectrum.

3.2. Inner race waviness

The vibration produced by waviness on the rotating inner race exhibits a more complex
spectrum than for outer race waviness. Axial vibration occurs at frequencies harmonic of the ball
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Fig. 6. (a—e) FFT of vibration due to outer race waviness of different orders (N, = 8).

to inner pass rate —Ny(weqge — @). In order to study the inner race waviness, the bearings of the
simulation model were assumed to have waviness in their inner race of the same order and
magnitude such that both bearings are identical. The amplitude of the waviness was set to 2 um.
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Table 3

Summary of outer race waviness

Waviness order Peak amplitude Harmonic in
(lobes/circumference) (um) bearing spectrum
7 3.5 Wpp

8 3.5 Wpp

12 5 Zwbp

16 8 20p,

17 15 2wbp

As inner race is fitted with the shaft, they rotate at the shaft speed. The vibration spectrums
obtained for different waviness orders of inner race is shown in Fig. 7.

When the number of waves is 2, a dominant peak appears at 2w (83 Hz) with the peaks at super
harmonics of the shaft speed (135, 209, 270, 360 Hz) as shown in Fig. 7a. For the inner race
waviness, wave passage frequency [w,, = Np(® — w¢qge) = 192 Hz]. For the three waves, the peak
amplitude appears at w,, + ® (275Hz) and at w,, — » (155Hz). A peak with lower amplitude
also appears at 3w (125 Hz) as shown in Fig. 7b.

Now the waviness order and vibration frequency follow the formula as

Waviness of orders Vibration caused by waviness

(71)
k =gNy+p gNp(w — Weage) £ pw

When the number of waves is 5, the peak amplitude appears at w,;, + 3w (320 Hz) where g = 1
as shown in Fig. 7c. The amplitude of peak is relatively very small (0.035 um). When the number
of waves is 7, the peak amplitude appears at w,,, — w (155Hz) where ¢ = 1 and p = 1 as shown in
Fig. 7d. The amplitude of peak is 2 um. For 8 waves, the peak amplitude of vibration appears near
to wave passage frequency (192 Hz) where ¢ = 1 and p = 0 as shown in Fig. 7e. The amplitude of
peak is 10 um. When the number of waves is 9, the peak amplitude of vibration appears at
yp + ® (235Hz) where ¢ = 1 and p = 1 as shown in Fig. 7f. The amplitude of peak is 7 um. For
11 waves, the peak amplitude of vibration appears at 11(®w — w¢qge) + @ (310 Hz) where g = 1 as
shown in Fig. 7g. The amplitude of peak is 4 um. When the number of waves is 12, the peak
amplitude of vibration appears at 2w,,, — 4w (220 Hz) where ¢ = 2 and p = 4 as shown in Fig. 7h.
The peak amplitude is 1.8 um. The other peaks appear at w,,, + 2w (275Hz), w,, — 2w (110 Hz)
and at w,, + 4w (360 Hz). For 13 waves the peak amplitude of vibration appears at 2w,,, — 3w
(265Hz) where ¢ = 2 and p = 3 as predicted from Eq. (71) shown in Fig. 7i. The peak amplitude is
0.2 pm. Other peak is at w,,, + 3w (320 Hz). When the number of waves is 14, the peak amplitude
of vibration appears at 2w,,, — 2w (306 Hz) where ¢ = 2 and p = 1 as shown in Fig. 7j. The peak
amplitude is 7.5 pm. For 15 waves the peak amplitude appears at 2w,, — w (350 Hz) where g = 2
and p =1 as shown in Fig. 7(k). The peak amplitude is higher 27 pum. For 16 waves the peak
amplitude of vibration appears very near to 2w,, (390Hz) where ¢ =2 and p = 0. The peak
amplitude is 15 um. When the number of waves is 17, the peak amplitude appears at 2w,, + @
(430 Hz) where ¢ = 2 and p = 1. The peak amplitude is 2.5 um.
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In the present results four different stages obtained. From N,, = 2 to 5, the less amplitude of
vibration exist. From N,, = 7 to 9, the predicted vibrations are for ¢ = lin Eq. (71). From N,, =
11 to 13, there is transformation from ¢ = 1 to 2 in Eq. (71) and from »,, = 14 to 17 the predicted
vibration is again for ¢ = 2. The same trend for larger orders of waviness can be expected.
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4. Conclusions

In the present investigation, an analytical model of a rotor bearing system has been developed
to obtain the non-linear vibration response due to surface waviness in the races. From the
obtained responses, it is implied that for the outer race waviness, the sever vibrations occurs when
the number of balls and waves are equal. The waviness order for sever vibration is kK = Np. The
axial vibrations appears at an integer multiple of the BPF ¢(N; X w4g4.). The waviness order and
vibration frequency for the outer race waviness are as follows:

Waviness of orders Vibration caused by waviness (72)
k = qNb ip qwacage ‘

The analytical simulation presented in this paper confirms the experimental studies of other
researchers. Because the load deflection relationship for balls is non-linear, in some cases Eq. (72)
is only applicable to major peaks. In case of the inner race waviness, the peak amplitude of
vibration follows the formula as given in Eq. (71) and the transformations of the peaks can be at
qyp £ pWeage. For the waviness order im, peak amplitude of vibration and superharmonic appear
at the wave passage frequency. Hence from this analysis the prediction about the major peaks at
frequencies can be made.

Appendix A. Nomenclature

F, unbalance force, N

1 moment of inertia of each rolling element
Lyjaps moment of inertia of the shaft

I; moment of inertia of the inner race

Ly moment of inertia of the outer race

k waviness order

K constant of proportionality, N/mm?>?

L arc length, mm

my mass of the shaft, kg

Miy mass of the inner race, kg

m; mass of the rolling elements, kg

Mo mass of the outer race, kg

N, number of wave lobes

N, number of balls

p empirical constant for a particular geometry
q empirical constant for a particular geometry
R radius of outer race, mm

r radius of inner race, mm

Tin position of mass center of inner race

Fout position of mass center of outer race

T kinetic energy of the bearing system

Tgary  kinetic energy of the shaft
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T; ,ace kinetic energy of the inner race

T, ..ce kinetic energy of the outer race

T, kinetic energy of the rolling elements

V potential energy of the bearing system

Ve potential energy of the shaft

Vi ace potential energy of the inner race

Vi, race potential energy of the outer race

Ve potential energy of the rolling elements

Vring  potential energy of the springs

Xin, Vin ~ center of inner race

Xout» Your center of outer race

0 deformation at the point of contact at inner and outer race, mm
(q'b)m angular velocity of inner race

((/))Om angular velocity of outer race

A wave length, mm

Weage  angular velocity of cage relating to the cage, rad/s
Wpp ball passage frequency, Hz

Wy wave passage frequency, Hz

(IT);,  amplitude of the wave at inner race, pm

(I1),, amplitude of the wave at outer race, pm

P; radial position of the rolling element

o radius of each rolling element

0; angular position of rolling element

be, position of jth rolling element from the center of inner race

FFT  fast Fourier transformation
BPF ball passage frequency, Hz
BPV  ball passage vibration, Hz
WPF  wave passage frequency, Hz
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